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Abstract: For robots to follow instructions from people, they must be able to1

connect the rich semantic information in human vocabulary, e.g. “can you get me2

the pink stuffed whale?” to their sensory observations and actions. This brings3

up a notably difficult challenge for robots: while robot learning approaches allow4

robots to learn many different behaviors from first-hand experience, it is imprac-5

tical for robots to have first-hand experiences that span all of this semantic infor-6

mation. We would like a robot’s policy to be able to perceive and pick up the pink7

stuffed whale, even if it has never seen any data interacting with a stuffed whale8

before. Fortunately, static data on the internet has vast semantic information, and9

this information is captured in pre-trained vision-language models. In this paper,10

we study whether we can interface robot policies with these pre-trained models,11

with the aim of allowing robots to complete instructions involving object cate-12

gories that the robot has never seen first-hand. We develop a simple approach,13

which we call Manipulation of Open-World Objects (MOO), which leverages a14

pre-trained vision-language model to extract object-identifying information from15

the language command and image, and conditions the robot policy on the current16

image, the instruction, and the extracted object information. In a variety of exper-17

iments on a real mobile manipulator, we find that MOO generalizes zero-shot to18

a wide range of novel object categories and environments. In addition, we show19

how MOO generalizes to other, non-language-based input modalities to specify20

the object of interest such as finger pointing, and how it can be further extended to21

enable open-world navigation and manipulation. The project’s website and evalu-22

ation videos can be found at https://robot-moo-anon.github.io/.23

1 Introduction24

For a robot to be able to follow instructions from humans, it must cope with the vast variety of25

language vocabulary, much of which may refer to objects that the robot has never interacted with26

first-hand. For example, consider the scenario where a robot has never seen or interacted with a plush27

animal from its own camera, and it is asked, “can you get me the pink stuffed whale?” How can the28

robot complete the task? While the robot has never interacted with this object category before, the29

internet and other data sources cover a much wider set of objects and object attributes than the robot30

has encountered in its own first-hand experience. In this paper, we study whether robots can tap into31

the rich semantic knowledge captured in such static datasets, in combination with the robot’s own32

experience, to be able to complete manipulation tasks involving novel object categories.33

Computer vision models can capture the rich semantic information contained in static datasets.34

Indeed, composing modules for perception, planning, and control in robotics pipelines is a long-35

standing approach [1, 2, 3], allowing robots to perform tasks with a wide set of objects [4]. How-36

ever, these pipelines are notably brittle, since the success of latter motor control modules relies on37

precise object localization. On the other hand, several prior works have trained neural network38

policies with pre-trained image representations [5, 6, 7, 8] and pre-trained language instruction em-39

beddings [9, 10, 11, 12]. While this form of vanilla pre-training can improve efficiency and gen-40

eralization, it does not provide a mechanism for robots to ground and manipulate novel semantic41

concepts, such as unseen object categories referenced in the language instruction. This leads to a42

crossroads — some approaches can conceivably generalize to many object categories but rely on43

fragile pipelines; others are less brittle but cannot generalize to new semantic object categories.44
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Figure 1: Overview of MOO. We train a language-conditioned policy conditioned on object locations from a
frozen VLM. The policy is trained on demonstrations spanning a set of 106 objects using VLM-based object-
centric representations, enabling generalization to novel objects, locations produced from new modalities.

To allow robots to generalize to new semantic concepts, we specifically choose to leverage open-45

vocabulary pre-trained vision-language models (VLMs), rather than models pre-trained on one46

modality alone. Such models capture the rich information contained in diverse static datasets, while47

grounding the linguistic concepts into a perceptual representation that can be connected to the robot’s48

observations. Crucially, rather than using the pre-trained model for precise state estimation in its en-49

tirety (akin to pipelined approaches), we only use the VLM to identify the relevant objects in the50

image by coarsely localizing them, while allowing an end-to-end trained policy to use this informa-51

tion along with the original observation to perform the task. More specifically, our system receives a52

language instruction and uses a VLM to identify the 2D image coordinates of objects in the instruc-53

tion. Along with the image and the instruction, the 2D coordinates of the objects are fed into our54

manipulation policy allowing it to ground the natural language to objects and know which objects55

to act upon without seeing any demonstrations with those objects. The VLM is frozen throughout56

all of our training, and the policy is trained with the real VLM detector in the loop to prevent the57

brittleness that can plague prior pipelined approaches.58

The main contribution of this paper is a flexible approach for open-world object manipulation that59

interfaces policy learning with pre-trained vision-language models. An overview is given in Fig. 1.60

The pre-trained models are trained on massive static image and language data that far exceeds the61

robot’s own experience. The robot’s policy is trained to perform skills using demonstration data62

covering a more modest yet still physically diverse set of 106 training objects. The composition63

of the pre-trained vision-language model and the control policy leads to an overarching language-64

conditioned policy that can complete commands that refer to novel semantic categories.65

We study the performance of our method across 1, 472 evaluations on a real robotic manipulator,66

where we find that our approach is significantly more successful than recent robot learning methods.67

Beyond verbal object descriptions, we also find that the trained policy can be easily combined with68

other means of communicating intent, e.g., pointing at an object and inferring the object description69

using a VLM, showing a generic image of the object of interest, or using a simple GUI. Finally,70

our experiments further show that our method can be integrated with an open-vocabulary object71

navigation model called Clip-on-Wheels (CoW), to complete mobile manipulation tasks involving72

novel objects. Throughout this paper, we refer to our approach as Manipulation of Open-vocabulary73

Objects (MOO) and the integrated mobile manipulation system as CoW-MOO.74

2 Related Work75

Leveraging Pre-Trained Models in Robotic Learning. Using off-the-shelf vision, speech, or lan-76

guage models is a long-standing approach in robotics [13, 14, 10]. Modern pre-trained vision and77

language models have improved substantially over older models, and have played an increasing role78

in robotics research. A large body of prior work has trained policies on top of frozen or fine-tuned79

visual representations [5, 15, 6, 16, 17, 18, 19, 7, 8, 20, 21], while other works have leveraged pre-80

trained language models [22, 23, 9, 10, 11, 24, 25, 12]. Unlike these prior works, we aim to leverage81

vision-language models that ground language in visual observations. Our use of vision-language82

models enables generalization to novel semantic object categories, which cannot be achieved by83

using vision models or language models individually.84

Generalization in Robotic Learning. A number of recent works have studied how robots can com-85

plete novel language instructions [26, 22, 23, 9, 10, 11, 27, 28, 24], typically focusing on instructions86

with novel combinations of words, i.e. compositional generalization, or instructions with novel ways87
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to describe previously-seen objects and behaviors. Our work focuses on how robots can complete88

instructions with entirely new words that refer to objects that were not seen in the robot’s demonstra-89

tion dataset. Other research has studied how robot behaviors like grasping and pick-and-place can90

be applied to unseen objects [29, 30, 31, 32, 33, 34, 35, 36, 37], focusing on generalization to visual91

or physical attributes. Our experimental settings require visual and physical object generalization92

but also require semantic object generalization. That is, unlike these prior works, the robot must be93

able to ground a description of a previously-unseen object category.94

Vision-Language Models for Robotic Manipulation. Two closest related works to our approach95

are CLIPort [38] and PerAct [12] that use the CLIP vision-language model as a backbone of their96

policy. Both of these approaches have demonstrated impressive level of generalization to unseen97

semantic categories and attributes. Inspired by these works, we aim to expand them to more general98

manipulation settings by: i) removing the need for depth cameras or camera calibration, ii) expand-99

ing and demonstrating that the hereby introduced representation works with other modalities such100

as pointing to the object of interest, iii) moving beyond 2D manipulation tasks, e.g. demonstrating101

the approach on tasks such as reorienting objects upright as well as mobile manipulation tasks.102

Open-World Object Detection in Computer Vision. Historically, object-detection methods have103

been restricted to a fixed category map covering a limited set of objects [39, 40, 41, 42]. These104

methods work well for the object categories on which they are trained, but have no knowledge of105

objects outside their limited vocabulary. Recently, a new wave of object detectors have emerged that106

aim to go beyond simple closed-vocabulary tasks by replacing the fixed one-hot category prediction107

with a shared image-language embedding space that can be used to answer open-vocabulary object108

queries [43, 44, 45, 46]. Typically these methods rely on internet-scale data in the form of pairs of109

image and associated descriptive text to learn the grounding of natural language to objects. Various110

methods have been employed to then extract object localization information in the form of bound-111

ing boxes and segmentation masks. In our work, we use the OWL-ViT detector due to it’s strong112

performance in the wild and publicly available implementation [43].113

3 Manipulation of Open-World Objects (MOO)114

The key goal of MOO is to develop a policy that can leverage the visually-grounded semantic in-115

formation captured by pre-trained vision-language models for generalization to object types not in116

the policy training set. More specifically, we aim to use the VLM to localize objects described in117

a given instruction, while allowing the policy to complete the task using both the instruction and118

the object localization information from the VLM. MOO accomplishes this in two stages. First,119

the current observation and the words in the instruction corresponding to object(s) are passed to120

the VLM to localize the objects. Then, the object localization information and the instruction sans121

object information are passed to the policy, along with the original observation, to predict actions.122

The key design choice of MOO lies in how to represent object information encoded in VLMs and123

how to feed that information to the instruction-conditioned policy. In the remainder of this section,124

we first overview the set-up, then describe the design of these crucial aspects of the method, and125

finally provide an overview of the model architecture and the training procedure as well as describe126

practical implementation details that allows us to deploy MOO on real robots.127

3.1 Problem Set-Up128

Formally, we assume that the robot, with image observations o ∈ O and actions a ∈ A, is pro-129

vided with a set of expert demonstrations Drobot collected via teleoperation. Each demonstration130

corresponds to a sequence of observation-action pairs {(oj , aj)}Tj=1 collected over a time horizon131

T , and is annotated with a structured language instruction ` for the task being performed in the132

demonstration. To help facilitate object generalization, we assume that these language instructions133

are structured as a combination of a template and a list of object descriptions within that template.134

For example, for the instruction ` =“move yellow banana near cup,”, the template is “move X near135

Y,” and the object descriptions are X =“yellow banana” and Y =“cup.” Inspired by RT-1 [24], in136

this work, we focus on five different types of skills defining the templates: “pick X ,” “move X near137

Y ,” “knock X over,“ “place X upright,“ and “place X into Y ,”.138

All of the objects seen in the demonstrations are drawn from a set Srobot, and our objective is to139

complete new structured language instructions with a seen template but novel objects that are not in140
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Figure 2: MOO architecture: We extract object location (represented as the center of the bounding box) on
the first frame of an episode. The segmentation mask is concatenated channel-wise to the input image for each
frame. We remove the language embedding for everything except the task so that the object specific information
is only provided through the object instance mask.

Srobot, which also have novel object descriptions. In aiming to complete this goal, our approach will141

leverage imitation learning and vision-language models, which we briefly review in the Appendix.142

3.2 Representing Object Information143

To utilize the object knowledge encoded in the VLMs, we need to pick a representation that can144

be easily transferred to the text-conditioned control policy. We start by identifying the instruction145

template (represented by verb v) and object X (or list of objects X,Y, ...) from the instruction146

`. Equipped with an object description X , we query a VLM to produce a bounding box of the147

object of interest with the prompt q = “An image of an X”, and use the resulting detection (if148

any) as conditioning of our policy. To reduce the reliance of the exact segmentation of the object149

dimensions, we select a single pixel that is at the center of the predicted bounding box as the object150

representation. In the case of one object description, we use a single-channel object mask with the151

value set to 1.0 at the pixel of the object’s predicted location. In the case of two object descriptions,152

we set the pixel value of the first to be 1.0 and the second to be 0.5.153

This design has two main advantages: first, it is a generic representation that works with objects of154

any size as long as they are visible, and second, it is compatible with a large selection of vision meth-155

ods such as bounding boxes or segmentation masks as these can be easily transformed into a single,156

object-centric pixel location. We ablate other object representation choices in the experiments.157

Importantly, this approach can handle object descriptions that are not previously seen in the robot’s158

demonstration data, as long as it is sufficiently represented in the static large-scale training data159

of the VLM. For any unseen objects, we simply include a description in the task command, e.g.,160

“pick stuffed toy whale.” Once the object description is translated into a pixel location by the VLM,161

the robot’s policy trained on demonstration data only needs to be capable of interpreting the mask162

location and how to physically manipulate the novel object’s shape, rather than needing to also163

ground the semantic object description.164

3.3 Architecture and Training of MOO165

We present the model architecture and information flow of MOO in Fig. 2. As described above, we166

extract the object descriptions from the language instruction and together with the initial image feed167

them into the VLM to output object locations in the image. This information is then represented as168

an object mask with dots at the center of the objects of interest.169

Once we obtain the mask, we append it channel-wise to the current image together with the recent170

image history, which is passed into the RT-1 policy architecture [24]. We use a language model171

to encode the previously extracted verb v part of the language instruction in an embedding space172

of an LLM. The images are processed by an EfficientNet [47] conditioned on the text embedding173

via FiLM [48]. This is followed by a Token Learner [49] to compute a small set of tokens, and174

finally a Transformer [50] to attend over these tokens and produce discretized action tokens. We175

refer the reader to the RT-1 paper for details regarding the later part of the architecture. The action176

space corresponds to the 7-DoF delta end-effector pose of the arm (including x, y, z, roll, pitch, yaw177

and gripper opening). The entire policy network is trained end-to-end using the imitation learning178

objective and we specify the details of the objective in the Appendix (Equation 1). Importantly, the179

VLM used to detect the objects is frozen during training, so that it does not overfit to the objects in180

the robot demonstration data. The policy is trained with this frozen VLM in the loop, so that the181

policy can learn to be robust to errors made by the VLM given other information in the image.182
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3.4 Practical Implementation183

To detect objects in our robot images, we use the Owl-ViT open-vocabulary object detector [43]. In184

practice, we find that it is capable of detecting most clearly visible objects without any fine-tuning,185

given a descriptive natural language phrase. The interface to the detector requires a natural language186

phrase describing what to detect (e.g., “An image of a small blue elephant toy.”) along with an image187

to run the detection on. The output from the model is a score map indicating which locations are188

most likely to correspond to the natural language description and their associated bounding boxes.189

We select a universal score threshold to filter detections. To detect our objects, we rely on some190

prompt-engineering using descriptive phrases including the color, size, and shape of objects, though191

most of our prompts worked well on the first attempt. We share the prompts in the Appendix.192

To make the inference time practical on real robots, we extract the object information via VLM only193

in the first episode frame. By doing so, most of the heavy computation is executed only once at194

the beginning and we can perform real-time control for the entire episode. Since the information is195

appended to the current observation, we rely on the policy to find the corresponding object in the196

current image if the object has moved since the first timestep.197

3.5 Training Data198

Figure 3: (Left) RT-1 objects that account for ≈ 70% of training data
covering all skills. (Middle) Diverse training objects that appear only in
“pick” demonstrations. (Right) Unseen objects used only for evaluation.

We start with the demonstra-199

tion data used by RT-1 [24] cov-200

ering 16 unique objects. De-201

spite the use of the VLM for202

semantic generalization, we ex-203

pect that the policy will re-204

quire more physical object di-205

versity to generalize to novel ob-206

jects. Therefore, we expand the207

dataset with additional diverse208

“pick” data across a set of 90209

diverse objects, for a total of210

106 objects, as shown in Fig-211

ure 3. We choose to only expand212

the set of objects for the picking213

skill, since it is the fastest skill to execute and therefore allows for the greatest amount of diverse214

data collection within a limited budget of demonstrator time. Our additional set of 90 diverse objects215

only appear in “pick” episodes. All other tasks, such as “move near” or “place into”, must be learned216

from the original 16 objects in the RT-1 dataset. Detailed statistics are in Appendix Figure 9.217

4 Experiments218

Our experiments answer the following questions: 1) Does MOO generalize across objects for differ-219

ent skills including unseen objects? 2) Does MOO generalize beyond new objects – Is MOO robust220

to distractors, backgrounds and environments? 3) Can the intermediate representation used support221

non-linguistic modalities to specify the task? 4) Does the object generalization performance scale222

with the (a) number of training episodes, (b) number of unique objects in the training episodes and223

(c) size of the model? 5) Can MOO be used for open-world navigation and manipulation?224

4.1 Experimental Setup225

Seen and unseen objects. The training data is collected with teleoperation on table-top environ-226

ments across a set of 106 different object types. We evaluate performance on 49 objects “seen” in227

training and report the performance as “seen”. We hold out 47 objects not present in training and228

report performance on these as “unseen”. Note that previous works often focus on unseen combina-229

tions of previously seen commands and objects (e.g. “pick an apple” even though the training data230

contains “move an apple into a bowl” and “pick a bowl”); we adopt a more strict definition of unseen231

objects, where our unseen object categories were not seen in the robot’s training demonstration data232

at any point for any task, therefore making our unseen performance a zero-shot object generalization233

problem. Furthermore, we report results across different environments that introduce novel textures,234

backgrounds, locations, and additional open-world objects not present in the training data.235
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Figure 4: Main Results. While baseline methods perform competitively on in-distribution combinations of
objects and skills seen during training, they fail to generalize to novel objects. MOO substantially improves
generalization to novel object categories unseen during training, especially for the “pick” skill.

Evaluation details. We evaluate on a set of tabletop tasks involving manipulating a diverse set236

of objects. We use mobile manipulators with 7 degree-of-freedom arm and two-fingered gripper237

(Appendix Figure 10). Our experiments evaluate the percent of successfully completed manipulation238

commands which include five skills: “pick”, “move near”, “knock,” “place upright,” and “place into”239

across a set of evaluation episodes (definition and success criteria follow RT-1 [24] and are described240

in the Appendix). To study object specificity and robustness, for all evaluation episodes, we include241

between two to four distractor objects in the scene which the robot should not interact with. For242

each evaluation episode, we randomly scatter the evaluation object(s) and the distractor objects onto243

the table. There is no consistent placement of the target object relative to the distractors. We repeat244

this process 21 times and report the performance. We present the experimental setup in Appendix245

Figure 10.246

Baselines. We compare two prior methods: RT-1 [24] and a modified version of VIMA [25], referred247

to as “VIMA-like”. VIMA-like preserves the cross-attention mechanism, but uses the mask image248

as the prompt token and the current image as state token. These modifications are necessary because249

VIMA uses Transporter-based action space and is not applicable to our task, i.e., our robot arm250

moves in 6D and has a gripper that can open and close continuously. These two baselines correspond251

to common alternatives where the computer vision data is used as a pre-training mechanism (as in252

RT-1) or object-centric information is fed to the network through cross attention (as in VIMA-like).253

4.2 Experimental Results254

Figure 5: MOO is able to generalize to new objects, textures, and
environments with greater success than prior methods. Visualiza-
tions are shown in Figure 6.

Generalization to Novel Objects.255

We investigate the question: Does256

MOO generalize across objects for257

different manipulation skills includ-258

ing objects never seen at training259

time? Experiments are presented in260

Figure 4 and example trajectories are261

shown in Appendix Figure 12. Rel-262

ative to the baselines on the pick263

tasks, MOO exhibits substantial im-264

provement over the seen object per-265

formance as well as the unseen ob-266

jects, which in both cases reaches267

∼ 50% improvement. MOO can cor-268

rectly utilize a VLM to find novel ob-269

jects and incorporate that information270

more effectively than the VIMA-like271

baseline. When comparing the performance on seen objects for the skills other than pick, we observe272

a slightly worse performance than for the pick tasks. This is understandable since the “Seen objects”273

for “Non-pick skills” have only been seen during the pick episodes as shown in Appendix Figure274

9. This demonstrates MOO’s ability to transfer the learned object generalization across the skills so275

that the objects that have only been picked can now be also used for other skills. In addition, MOO276

exhibit generalization to unseen objects (i.e. unseen in any previous tasks, including pick) that is at277

the same level as for unseen objects for the pick skill, and 50% better than baseline.278
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Figure 6: To study the robustness of MOO, we evaluate on (a) new environments, (b) challenging texture
backgrounds which are visually similar to unseen objects in the scene, and (c) additional open-world objects.

Rollouts

Point with Finger

Input Mask

Target Image Upload

Click on GUI

Text Instruction

“pick yellow 
highlighter”

(a)

(b)

(c)

(d)

Figure 7: We explore using various input modalities to generate the single-pixel object representations used by
MOO. (a) shows the standard mask generation process using OWL-ViT with a text instruction. (b) shows using
a VLM to generate a text caption, then fed to OWL-ViT. (c) shows an uploaded image to prompt OWL-ViT. (d)
shows a user providing a ground-truth mask via a GUI.

Robustness Beyond New Objects. To further test the robustness of MOO, we analyze novel evalua-279

tion settings with significantly increased difficulty and visual variation, which are shown in Figure 6.280

To reduce the number of real robot evaluations, we focus this comparison on the picking skill. The281

results are presented in Figure 5. Across these challenging evaluation scenes, MOO is significantly282

more robust compared to VIMA-like [25] and RT-1 [24]. This indicates that the use of VLMs in283

MOO not only improves generalization to new objects that the robot has not interacted with, but also284

significantly improves generalization to new backgrounds and environments.285

Input Modality Experiments. To answer our third question, we perform a number of qualitative286

experiments testing different input modalities (detailed description in the Appendix). We find that287

MOO is able to generalize to masks generated from a variety of upstream input modalities, even288

under scenarios outside the training distribution including scenes with duplicate objects and clutter.289

As the first qualitative example, Figure 7(b) illustrates that VLM such as PaLI [51] can infer what290

object a human is pointing at, allowing OWL-ViT to generate an accurate mask of the object of in-291

terest. Secondly, OWL-ViT can also use visual query features instead of textual features to generate292

a mask, enabling images of target objects to act as conditioning for MOO, as shown in Figure 7(c).293

This modality is useful in cases where text-based mask generation due to ambiguity in natural lan-294

guage, or when target images are found in other scene contexts. We explore both the setting where295

target images are sourced from similar scenes or from diverse internet images. Finally, we show that296

MOO can interpret masks directly provided by humans via a GUI, as shown in Figure 7(d). This297

is useful in cases where both text-based and image-based mask generation is difficult, such as with298

duplicate or cluttered objects. MOO is robust to how upstream input masks were generated, and our299

preliminary results suggest interesting future avenues in the space of human-robot interaction.300
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CoW: “find the pepsi” MOO: “pick up the pepsi”

Figure 8: We present CoW-MOO, a system that combines an open-vocabulary object navigation by CoW [52]
with open-world manipulation by MOO. Full videos are shown on the project’s website.

MOO Ablations. We conduct a number of ablations to assess the impact of the size and diversity of301

our dataset and the scale (in terms of number of parameters) of our model. In Table 1 we vary both302

the number of unique objects in the training set (reducing it from 106 to 53 to 16 unique training303

objects) and the number of total training episodes (reducing it by half – from 59051 training episodes304

to 29525) while keeping all objects in the dataset. We aim to vary these two axes independently to305

determine the impact of the overall size of the dataset vs its object diversity on the final results.306

Interestingly, we find that seen object performance is not affected by reducing object diversity, but307

generalization to unseen objects is very sensitive to object diversity.308

Additionally, we investigate the impact of scaling model size. We train two smaller versions of309

MOO where we scale down the total number of layers and the layer width by a constant factor. The310

version of MOO that we use in our main experiments has 111M parameters, which, for the purpose311

of this ablation, we then reduce by an order of magnitude down to 10.2M and then by 5X again312

down to 2.37M. Comparing different sizes of the model, we find significant drop offs in both “seen”313

(from 98% to 54% and 39% respectively) and “unseen” object performance (from 79% to 50% and314

13%; see Appendix Figure 11 for a graph of the results). We also note that we could not make MOO315

larger than 111M parameters without increasing the latency on robot to an unacceptable level, but316

we expect continued performance gains with bigger models if latency requirements can be relaxed.317

Open-World Navigation and Manipulation. Finally, we consider how such a system can be inte-318

grated with open-vocabulary object-based navigation. Coincidentally, there is an open-vocabulary319

object navigation algorithm called Clip on Wheels (CoW) [52]; we implement a variant of CoW and320

combine it with MOO, which we refer to as CoW-MOO. CoW handles open-vocabulary navigation321

to an object of interest, upon which MOO continues with manipulating the target object. This com-322

bination enables a truly open-world task execution, where the robot is able to first find an object323

it has never interacted with, and then successfully manipulate it to accomplish the task. We show324

example qualitative experiments in Figure 8 and in the video of this system on the project’s website1.325

5 Conclusion and Limitations326

In this paper we presented MOO, an approach for leveraging the rich semantic knowledge captured327

by vision-language models in robotic manipulation policies. We conduct 1, 472 real world evalua-328

tions to show that MOO allows robots to generalize to novel instructions involving novel objects,329

enables greater robustness to visually challenging table textures and new environments, is amenable330

to multiple input modalities, and can be combined with open-vocabulary semantic navigation.331

Despite the promising results, MOO has multiple important limitations. First, the object mask rep-332

resentation used by MOO may struggle in visually ambiguous cases, such as where objects are333

overlapping or occluded. Second, we expect the generalization of the policy to still be limited by the334

motion diversity of training data. For example, we expect that the robot may struggle to grasp novel335

objects with drastically different shapes or sizes than those seen in the training demonstration data,336

even with successful object localization. Third, instructions are currently expected to conform to a337

set of templates from which target objects and verbs can be easily separated. We expect this limita-338

tion could be lifted by leveraging an LLM to extract relevant properties from freeform instructions.339

Finally, MOO cannot currently handle complex object descriptions involving spatial relations, such340

as “the small object to the left of the plate.” Fortunately, we expect performance on tasks such as341

these to improve significantly as vision-language models continue to advance moving forward.342

1https://robot-moo-anon.github.io/
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Appendix485

Imitation Learning and RT-1486

MOO builds upon a language-conditioned imitation learning setup. The goal of language-487

conditioned imitation learning is to learn a policy π(a | `, o), where a is a robot action that should be488

applied given the current observation o and task instruction `. To learn a language-conditioned policy489

π, we build on top of RT-1 [24], a recent robotics transformer-based model that achieves high lev-490

els of performance across a wide variety of manipulation tasks. RT-1 uses behavioral cloning [53],491

which optimizes π by minimizing the negative log-likelihood of an action a given the image ob-492

servations seen so far in the trajectory and the language instruction, using a demonstration dataset493

containing N demonstrations:494

J(π) :=

N∑
n=1

T (n)∑
t=1

log π(a
(n)
t | `(n), {o(n)j }

t
j=1). (1)

Vision-Language Models495

In recent years, there has been a growing interest in developing models that can detect objects496

in images based on natural language queries. These models, known as vision-language models497

(VLMs), are enabling detectors to identify a wide range of objects based on natural language queries.498

Typically the text queries are tokenized and embedded in a high-dimensional space by a pre-trained499

language encoder, and the image is processed by a separate network to extract image features into500

the same embedding space as the text features. The language and image representations are then501

combined to make predictions of the bounding boxes and segmentation masks. Given a natural502

language query, q, and an image observation on which to run detection, o, these models aim to503

produce a set of embeddings for the image fi(o) with shape (height,width, feature dim) and an504

embedding of the language query fl(q) with shape feature dim such that logits = fi(o) · fl(q) gives505

a logit score map and is maximized at regions in o which correspond to the queries in q. Each506

image embedding location within fi(o) is also associated with a predicted bounding box or mask507

indicating the spatial extent of that object corresponding to fi(o). In this work, we use the Owl-ViT508

detector [54], which we discuss further in Sec. 3.4.509

Datasets510

We collect a focused collection of teleoperated demonstration data that focuses on increasing object511

diversity for the most efficient skill to collect data for, the picking task. Detailed dataset statistics512

across objects are shown in Appendix Figure 9.513

Figure 9: Distribution of training objects for “pick” episodes and other skills. The data on the left was what was
used by [24]. We augmented RT-1 data with a large number of diverse pick episodes in order to demonstrate
strong generalization to unseen objects. Blue and green bars represent “pick” episodes and orange bars repre-
sent other tasks like “move near” or “knock.” “Green” bars were the objects we randomly selected for ”seen”
evaluations. All randomly selected “unseen” objects are shown to the right.

Experiments514

We show a visualization of our 7-DoF manipulation robot in Figure 10.515
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Figure 10: Image of our robot hardware and evaluation setting.

Skills. Our experiments evaluate the percent of successfully completed manipulation commands516

which include five skills: “pick”, “move near”, “knock,” “place upright,” and “place into” across517

a set of evaluation episodes. The definition of the tasks follows RT-1 [24]: For “pick”, success is518

defined as (1) grasping the specified object and (2) lifting the object at least 6 inches from the table519

top. For “move near”, success is defined as (1) grasping the specified object and (2) placing it within520

6 inches of the specified target object. For “knock”, success is defined as placing the specified object521

from an “upright” position onto its side. “Place upright” tasks are the inverse of “knock” and involve522

placing an object from its side into an upright position. Finally, “place into” tasks involve placing523

one object into another, such as an apple into a bowl.524

Robustness evaluation details. We evaluate the robustness of MOO on a variety of visually chal-525

lenging scenarios with drastically different furniture and backgrounds, as shown in Figure 6; the526

results are reported in Figure 5. The first set of these difficult evaluation scenes introduces six evalu-527

ations across five additional open-world objects that correspond to various household items that have528

not been seen at any point during training. The second set of difficult scenes introduces 14 evalu-529

ations across two patterned tablecloths; these tablecloth textures are significantly more challenging530

than the plain gray counter-tops seen in the training demonstration dataset. Finally, the last set of531

difficult scenes include 14 evaluations across three new environments in natural kitchen and office532

spaces that were never present training. These new scenes simultaneously change the counter-top533

materials, backgrounds, lighting conditions, and distractor items.534

Input modality demonstration details. We explore the ability of MOO to incorporate object-535

centric mask representations that are generated via different processes than the one used during536

training. During training, an OWL-ViT generates mask visual representations from textual prompts,537

as described in Section 3.2. We study whether MOO can successfully accomplish manipulation538

tasks given (1) a mask generated from a text caption from a generative VLM, (2) a mask generated539

from an image query instead of a text query, or (3) a mask directly provided by a human via a540
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Dataset Filtering Pick

Objects Episodes per Object Seen objects Unseen objects

100% 100% 98 79
50% 100% 92 75
18% 100% 88 19
100% 50% 46 38
100% 10% 23 0

Table 1: Performance of MOO in percentage of success relative to the amount of data used for training. Both
data scale and data diversity are important.

Figure 11: Pick success vs. model size. We see continuous improvements on both seen and unseen objects
as we increase the number of parameters of our model architecture while keeping the data set size fixed. In
comparison to our main model, we scaled down layer widths and depth by the same constant multiplier. We
expect more performance gains at larger model capacity, yet are currently unable to scale further due to real
time inference constraints on our robot.

GUI. For each of these cases, we implement different procedures for generating the object mask541

representation, which are then fed to the frozen MOO policy.542

Training data ablation. We ablate the amount of data used to train MOO, and find that both data543

diversity and data scale are important, as shown in Table 1.544

Prompts used545

We use the following prompts to OWL-ViT detect our objects. All prompts were prefixed with the546

phrase “An image of a”.547

7up can→ “white can of soda”548

banana→ “banana”549

black pen→ “black pen”550

blue chip bag→ “blue bag of chips”551

blue pen→ “blue pen”552

brown chip bag→ “brown bag of chips”553

cereal scoop→ “cereal scoop”554

chocolate peanut candy→ “bag of candy snack”555

coffee cup→ “coffee cup”556

coke can→ “red can of soda”557
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move cold brew can near green cup

pick disinfectant wipes  

move small blue plate near whisk

pick wrist watch

move bird ornament near whisk

pick small orange rolling pin

Figure 12: Example images of our policy detecting and grasping objects not seen during training time. The
object detections are colored in correspondence to the text above the image, and the images are ordered left to
right across time.

coke zero can→ “can of soda”558

disinfectant pump→ “bottle”559

fork→ “fork”560

green can→ “green aluminum can”561

green cookies bag→ “green snack food bag”562

green jalapeno chip bag→ “green bag of chips”563

green sprite can→ “green soda can”564

knife→ “knife”565

orange can→ “orange aluminum can”566

orange plastic bottle→ “orange bottle”567

oreo→ “cookie snack food bag”568

pepsi can→ “blue soda can”569

popcorn chip bag→ “bag of chips”570

pretzel chip bag→ “bag of chips”571

red grapefruit can→ “red aluminum can”572

redbull can→ “skinny silver can of soda”573

rxbar blueberry→ “small blue rectangular snack food bar”574

spoon→ “spoon”575

swedish fish bag→ “bag of candy snack food”576

water bottle→ “clear plastic waterbottle with white cap”577

white sparkling can→ “aluminum can”578

15



blue plastic bottle→ “clear plastic waterbottle with white cap”579

diet pepper can→ “can of soda”580

disinfectant wipes→ “yellow and blue pack”581

green rice chip bag→ “green bag of chips”582

orange→ “round orange fruit”583

paper bowl→ “round bowl”584

rxbar chocolate→ “small black rectangular snack food bar”585

sponge→ “scrub sponge”586

blackberry hint water→ “clear plastic bottle with white cap”587

pineapple hint water→ “clear plastic bottle with white cap”588

watermelon hint water→ “clear plastic bottle with white cap”589

regular 7up can→ “can of soda”590

lemonade plastic bottle→ “clear plastic bottle with white cap”591

diet coke can→ “silver can of soda”592

yellow pear→ “yellow pear”593

green pear→ “green pear”594

instant oatmeal pack→ “flat brown pack of instant oatmeal”595

coffee mixing stick→ “small thin flat wooden popsicle stick”596

coffee cup lid→ “round disposable coffee cup lid”597

coffee cup sleeve→ “brown disposable coffee cup sleeve”598

numi tea bag→ “small flat packet of tea”599

fruit gummies→ “small blue bag of snacks”600

chocolate caramel candy→ “small navy bag of candy”601

original redbull can→ “can of energy drink with dark blue label”602

cold brew can→ “blue and black can”603

ginger lemon kombucha→ “yellow and tan aluminum can with brown writing”604

large orange plate→ “circular orange plate”605

small blue plate→ “circular blue plate”606

love kombucha→ “white and orange can of soda”607

original pepper can→ “dark red can of soda”608

ito en green tea→ “light green can of soda”609

iced tea can→ “black can of soda”610

cheese stick→ “yellow cheese stick in wrapper”611

brie cheese cup→ “small white cheese cup with wrapper”612

pineapple spindrift can→ “white and cyan can of soda”613

lemon spindrift can→ “white and brown can of soda”614

lemon sparkling water can→ “yellow can of soda”615

milano dark chocolate→ “white pack of snacks”616

square cheese→ “small orange rectangle packet ”617

boiled egg→ “small white egg in a plastic wrapper”618

pickle snack→ “small black and green snack bag”619

red cup→ “plastic red cup”620

blue cup→ “plastic blue cup”621

orange cup→ “plastic orange cup”622

green cup→ “plastic green cup”623

head massager→ “metal head massager with many wires”624

chew toy→ “blue and yellow toy with orange polka dots”625

wrist watch→ “wrist watch”626

small orange rolling pin→ “small orange rolling pin with wooden handles”627

large green rolling pin→ “large green rolling pin with wooden handles”628

rubiks cube→ “rubiks cube”629

blue microfiber cloth→ “blue cloth”630

gray microfiber cloth→ “gray cloth”631

green microfiber cloth→ “green cloth”632

small blending bottle→ “small turqoise and brown bottle”633

large tennis ball→ “large tennis ball”634

table tennis paddle→ “table tennis paddle”635

octopus toy→ “purple toy octopus”636

pink shoe→ “pink shoe”637

floral shoe→ “red and blue shoe”638

whisk→ “whisk”639

orange spatula→ “orange spatula”640

small blue spatula→ “small blue spatula”641

large yellow spatula→ “large yellow spatula”642

egg separator→ “large pink cooking spoon”643
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green brush→ “green brush”644

small purple spatula→ “small purple spatula”645

badminton shuttlecock→ “shuttlecock”646

black sunglasses→ “black sunglasses”647

toy ball with holes→ “toy ball with holes”648

red plastic shovel→ “red plastic shovel”649

bird ornament→ “colorful ornament with blue and yellow confetti”650

blue balloon→ “blue balloon animal”651

catnip toy→ “small dark blue plastic cross toy”652

raspberry baby teether→ “red and green baby pacifier”653

slinky toy→ “gray metallic cylinder slinky”654

dna chew toy→ “big orange spring”655

gray suction toy→ “gray suction toy”656

teal and pink toy car→ “teal and pink toy car”657

two pound purple dumbbell→ “purple dumbbell”658

one pound pink dumbbell→ “pink dumbbell”659

three pound brown dumbbell→ “brown dumbbell”660

dog rope toy→ “white pink and gray rope with knot”661

fish toy→ “fish”662

chain link toy→ “skinny green rectangular toy”663

toy boat train→ “plastic toy boat”664

white coat hanger→ “white coat hanger”665

666
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